Short Summary

What is constant in the simultaneous fit? This should defined by PDG, whose uncertainties should be small enough:

$$ \mathcal{B}(K_1\to K^*_0(1430)\pi)=(28\pm4)\%,\\\mathcal{B}(K_1\to K\omega)=(11.0\pm 2.0)\%, \\ \mathcal{B}(K_1\to K\rho)=(38\pm13)\% $$

Target:

$$ \mathcal{\alpha}=\frac{\mathcal{B}(K_1\to K^*\pi)}{\mathcal{B}(K_1\to K\rho)} $$

where $\mathcal{B}(K_1\to K^\pi)=\mathcal{B}(K_1\to K^(1430)\pi)+\mathcal{B}(K_1\to K^*(892)\pi)$.

Through ISO spin, the branching fraction of physical observable is:

$$ \mathcal{B}(K_1^+\to K^+\pi^-\pi^+)=\frac{1}{3}\times \mathcal{B}(K_1\to K\rho)+\frac{4}{9}\times \mathcal{B}(K_1\to K^(892)\pi)+\frac{4}{9}\times \mathcal{B}(K_1\to K^_0(1430)\pi)+\mathcal{B}(K_1\to KX^0) $$

$$ \mathcal{B}(K_1^0\to K^+\pi^-\pi^0)=\frac{2}{3}\times \mathcal{B}(K_1\to K\rho)+\frac{4}{9}\times \mathcal{B}(K_1\to K^(892)\pi)+\frac{4}{9}\times \mathcal{B}(K_1\to K^_0(1430)\pi) $$

where $\mathcal{B}(K_1\to KX^0)= \mathcal{B}(K_1\to K\omega)+\mathcal{B}(K_1\to Kf_0(1370))$.

If we ignore the coefficients, and define it as:

$$ \mathcal{B}_{3body}=\mathcal{B}(K_1\to K\rho)+\mathcal{B}(K_1\to K^*\pi)+\mathcal{B}(K_1\to KX^0) $$

We consider two cases:

Case 1: $\mathcal{B}(K_1\to KX^0)=0$

Define a $\beta$:

$$ \beta^{-1} = 1 - \frac{\mathcal{B}(K_1^+\to K^+\pi^-\pi^+)}{\mathcal{B}(K^0_1\to K^+\pi^-\pi^0)}\Rightarrow \alpha=\frac{3}{4}(\beta-2) $$